Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
PLoS One ; 17(3): e0264711, 2022.
Article in English | MEDLINE | ID: covidwho-1793510

ABSTRACT

Reports detailing the clinical characteristics, viral load, and outcomes of patients with normal initial chest CT findings are lacking. We sought to compare the differences in clinical findings, viral loads, and outcomes between patients with confirmed COVID-19 who initially tested negative on chest CT (CT negative) with patients who tested initially positive on chest CT (CT positive). The clinical data, viral loads, and outcomes of initial CT-positive and CT-negative patients examined between January 2020 and April 2020 were retrospectively compared. The efficacy of viral load (cyclic threshold value [Ct value]) in predicting pneumonia was evaluated using receiver operating characteristic (ROC) curve and area under the curve (AUC). In total, 128 patients underwent initial chest CT (mean age, 54.3 ± 19.0 years, 50% male). Of those, 36 were initially CT negative, and 92 were CT positive. The CT-positive patients were significantly older (P < .001) than the CT-negative patients. Only age was significantly associated with the initial presence of pneumonia (odds ratio, 1.060; confidence interval (CI), 1.020-1-102; P = .003). In addition, age (OR, 1.062; CI, 1.014-1.112; P = .011), fever at diagnosis (OR, 6.689; CI, 1.715-26.096; P = .006), and CRP level (OR, 1.393; CI, 1.150-1.687; P = .001) were significantly associated with the need for O2 therapy. Viral load was significantly higher in the CT-positive group than in the CT-negative group (P = .017). The cutoff Ct value for predicting the presence of pneumonia was 27.71. Outcomes including the mean hospital stay, intensive care unit admission, and O2 therapy were significantly worse in the CT-positive group than in the CT-negative group (all P < .05). In conclusion, initially CT-negative patients showed better outcomes than initially CT-positive patients. Age was significantly associated with the initial presence of pneumonia, and viral load may help in predicting the initial presence of pneumonia.


Subject(s)
COVID-19/diagnosis , Thorax/diagnostic imaging , Viral Load , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Republic of Korea/epidemiology , Retrospective Studies , SARS-CoV-2 , Sputum/virology , Tomography, X-Ray Computed , Viral Load/physiology , Young Adult
2.
Microbiol Spectr ; 10(1): e0059121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691413

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a mild to severe respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The diagnostic accuracy of the Centers for Disease Control and Prevention (CDC)- or World Health Organization (WHO)-recommended real-time PCR (RT-qPCR) primers in clinical practice remains unproven. We conducted a prospective study on the accuracy of RT-qPCR using an in-house-designed primer set (iNP) targeting the nucleocapsid protein as well as various recommended and commercial primers. The accuracy was assessed by culturing or seroconversion. We enrolled 12 confirmed COVID-19 patients with a total of 590 clinical samples. When a cutoff value of the cycle threshold (Ct) was set to 35, RT-qPCRs with WHO RdRp primers and CDC N1, N2, and N3 primers showed sensitivity of 42.1% to 63.2% and specificity of 90.5% to 100% in sputum, and sensitivity of 65.2% to 69.6% and specificity of 65.2% to 69.6% in nasopharyngeal samples. The sensitivity and specificity of iNP RT-qPCR in sputum and nasopharyngeal samples were 94.8%/100% and 69.6%/100%, respectively. Sputum testing had the highest sensitivity, followed by nasopharyngeal testing (P = 0.0193); self-collected saliva samples yielded better characteristics than oropharyngeal samples (P = 0.0032). Our results suggest that iNP RT-qPCR has better sensitivity and specificity than RT-PCR with WHO (P < 0.0001) or CDC (N1: P = 0.0012, N2: P = 0.0013, N3: P = 0.0012) primers. Sputum RT-qPCR analysis has the highest sensitivity, followed by nasopharyngeal, saliva, and oropharyngeal assays. Our study suggests that considerable improvement is needed for the RT-qPCR WHO and CDC primer sets for detecting SARS-CoV-2. IMPORTANCE Numerous research campaigns have addressed the vast majority of clinical and diagnostic specificity and sensitivity of various primer sets of SARS-CoV2 viral detection. Despite the impressive progress made to resolve the pandemic, there is still a need for continuous and active improvement of primers used for diagnosis in clinical practice. Our study significantly exceeds the scale of previously published research on the specificity and sensitivity of different primers comparing with different specimens and is the most comprehensive to date in terms of constant monitoring of primer sets of current usage. Henceforth, our results suggest that sputum samples sensitivity is the highest, followed by nasopharyngeal, saliva, and oropharyngeal samples. The CDC recommends the use of oropharyngeal specimens, leading to certain discrepancy between the guidelines set forth by the CDC and IDSA. We proved that the oropharyngeal samples demonstrated the lowest sensitivity for the detection of SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/standards , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/virology , Cross Reactions , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Oropharynx/virology , SARS-CoV-2/genetics , Saliva/virology , Sensitivity and Specificity , Sputum/virology , Viral Load , Young Adult
3.
PLoS One ; 17(2): e0263341, 2022.
Article in English | MEDLINE | ID: covidwho-1690730

ABSTRACT

Rapid and accurate detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the successful control of the current global COVID-19 pandemic. The real-time reverse transcription polymerase chain reaction (Real-time RT-PCR) is the most widely used detection technique. This research describes the development of two novel multiplex real-time RT-PCR kits, AccuPower® COVID-19 Multiplex Real-Time RT-PCR Kit (NCVM) specifically designed for use with the ExiStation™48 system (comprised of ExiPrep™48 Dx and Exicycler™96 by BIONEER, Korea) for sample RNA extraction and PCR detection, and AccuPower® SARS-CoV-2 Multiplex Real-Time RT-PCR Kit (SCVM) designed to be compatible with manufacturers' on-market PCR instruments. The limit of detection (LoD) of NCVM was 120 copies/mL and the LoD of the SCVM was 2 copies/µL for both the Pan-sarbecovirus gene and the SARS-CoV-2 gene. The AccuPower® kits demonstrated high precision with no cross reactivity to other respiratory-related microorganisms. The clinical performance of AccuPower® kits was evaluated using the following clinical samples: sputum and nasopharyngeal/oropharyngeal swab (NPS/OPS) samples. Overall agreement of the AccuPower® kits with a Food and Drug Administration (FDA) approved emergency use authorized commercial kit (STANDARD™ M nCoV Real-Time Detection kit, SD BIOSENSOR, Korea) was above 95% (Cohen's kappa coefficient ≥ 0.95), with a sensitivity of over 95%. The NPS/OPS specimen pooling experiment was conducted to verify the usability of AccuPower® kits on pooled samples and the results showed greater than 90% agreement with individual NPS/OPS samples. The clinical performance of AccuPower® kits with saliva samples was also compared with NPS/OPS samples and demonstrated over 95% agreement (Cohen's kappa coefficient > 0.95). This study shows the BIONEER NCVM and SCVM assays are comparable with the current standard confirmation assay and are suitable for effective clinical management and control of SARS-CoV-2.


Subject(s)
COVID-19/virology , Multiplex Polymerase Chain Reaction , Nasopharynx/virology , Oropharynx/virology , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Cross Reactions , Humans , Limit of Detection , Sensitivity and Specificity
5.
PLoS One ; 16(11): e0259165, 2021.
Article in English | MEDLINE | ID: covidwho-1581791

ABSTRACT

The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass spectrometry (MS) based proteomics for the detection of SARS-CoV-2 proteins in both research samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of Nucleocapsid protein, the limit of detection was estimated to be in the mid-attomole range (9E-13 g). Next, this PRM methodology was applied to the detection of viral proteins in various COVID-19 patient clinical specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results suggest that targeted MS based proteomics may have the potential to be used as an additional tool in COVID-19 diagnostics.


Subject(s)
COVID-19/diagnosis , Proteomics , SARS-CoV-2/isolation & purification , Viral Proteins/isolation & purification , Animals , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Humans , Mass Spectrometry , Nucleocapsid/genetics , Nucleocapsid/isolation & purification , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Proteome/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sputum/virology , Vero Cells , Viral Proteins/genetics
7.
BMC Infect Dis ; 21(1): 665, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1455925

ABSTRACT

BACKGROUND: As SARS-CoV-2 testing expands, particularly to widespread asymptomatic testing, high sensitivity point-of-care PCR platforms may optimise potential benefits from pooling multiple patients' samples. METHOD: We tested patients and asymptomatic citizens for SARS-CoV-2, exploring the efficiency and utility of CovidNudge (i) for detection in individuals' sputum (compared to nasopharyngeal swabs), (ii) for detection in pooled sputum samples, and (iii) by modelling roll out scenarios for pooled sputum testing. RESULTS: Across 295 paired samples, we find no difference (p = 0.1236) in signal strength for sputum (mean amplified replicates (MAR) 25.2, standard deviation (SD) 14.2, range 0-60) compared to nasopharyngeal swabs (MAR 27.8, SD 12.4, range 6-56). At 10-sample pool size we find some drop in absolute strength of signal (individual sputum MAR 42.1, SD 11.8, range 13-60 vs. pooled sputum MAR 25.3, SD 14.6, range 1-54; p < 0.0001), but only marginal drop in sensitivity (51/53,96%). We determine a limit of detection of 250 copies/ml for an individual test, rising only four-fold to 1000copies/ml for a 10-sample pool. We find optimal pooled testing efficiency to be a 12-3-1-sample model, yet as prevalence increases, pool size should decrease; at 5% prevalence to maintain a 75% probability of negative first test, 5-sample pools are optimal. CONCLUSION: We describe for the first time the use of sequentially dipped sputum samples for rapid pooled point of care SARS-CoV-2 PCR testing. The potential to screen asymptomatic cohorts rapidly, at the point-of-care, with PCR, offers the potential to quickly identify and isolate positive individuals within a population "bubble".


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Sputum/virology , Diagnostic Tests, Routine , Humans , Limit of Detection , Nasopharynx/virology , Sensitivity and Specificity , Viral Load
9.
Clin Chim Acta ; 511: 177-180, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1385202

ABSTRACT

To clarify the effect of different respiratory sample types on SARS-CoV-2 detection, we collected throat swabs, nasal swabs and hock-a-loogie saliva or sputum, and compared their detection rates and viral loads. The detection rates of sputum (95.65%, 22/23) and hock-a-loogie saliva (88.09%, 37/42) were significantly higher than those in throat swabs (41.54%, 27/65) and nasal swabs (72.31%, 47/65) (P < 0.001). The Ct Values of sputum, hock-a-loogie saliva and nasal swabs were significantly higher than that in throat swabs, whereas no significant difference was observed between sputum and saliva samples. Hock-a-loogie saliva are reliable sample types that can be used to detect SARS-CoV-2, and worthy of clinical promotion.


Subject(s)
COVID-19/diagnosis , COVID-19/genetics , Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Saliva/virology , Specimen Handling/standards , Adult , Female , Humans , Male , Middle Aged , Nasopharynx/virology , Polymerase Chain Reaction/methods , Prospective Studies , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Viral Load/methods , Viral Load/standards
10.
Biosensors (Basel) ; 11(9)2021 Aug 28.
Article in English | MEDLINE | ID: covidwho-1374295

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), has severely influenced public health and economics. For the detection of SARS-CoV-2, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein (Cas)-based assays have been emerged because of their simplicity, sensitivity, specificity, and wide applicability. Herein, we have developed a CRISPR-Cas12-based assay for the detection of SARS-CoV-2. In the assay, the target amplicons are produced by isothermal reverse transcription recombinase polymerase amplification (RT-RPA) and recognized by a CRISPR-Cas12a/guide RNA (gRNA) complex that is coupled with the collateral cleavage activity of fluorophore-tagged probes, allowing either a fluorescent measurement or naked-eye detection on a lateral flow paper strip. This assay enables the sensitive detection of SARS-CoV-2 at a low concentration of 10 copies per sample. Moreover, the reliability of the method is verified by using nasal swabs and sputum of COVID-19 patients. We also proved that the current assay can be applied to other viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV), with no major changes to the basic scheme of testing. It is anticipated that the CRISPR-Cas12-based assay has the potential to serve as a point-of-care testing (POCT) tool for a wide range of infectious viruses.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , SARS-CoV-2/isolation & purification , Severe acute respiratory syndrome-related coronavirus/isolation & purification , Virus Diseases/diagnosis , CRISPR-Cas Systems , Fluorescent Dyes/chemistry , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Nose/virology , Point-of-Care Testing , RNA, Guide, Kinetoplastida/chemistry , RNA, Guide, Kinetoplastida/genetics , Reverse Transcriptase Polymerase Chain Reaction , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Sputum/virology
11.
Microbiol Spectr ; 9(1): e0003521, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1371853

ABSTRACT

The gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection diagnosis is reverse transcription (RT)-PCR from a nasopharyngeal swab specimen (NPS). Its collection involves close contact between patients and health care workers, requiring a significant amount of workforce and putting them at risk of infection. We evaluated self-collection of alternative specimens and compared their sensitivity and cycle threshold (CT) values to those of NPS. We visited acute coronavirus disease 2019 (COVID-19) outpatients to collect concomitant NPS and gargle specimens and had patients self-collect gargle and either sputum or spit specimens the next morning. We included 40 patients and collected 40 concomitant NPS and gargle specimens, as well as 40 gargle, 22 spit, and 16 sputum specimens the next day (2 patients could not produce sputum). All specimens were as sensitive as NPS. Gargle specimens had a sensitivity of 0.97 (95% confidence interval [CI], 0.92 to 1.00), whether collected concomitantly with NPS or the next morning. Next-morning spit and sputum specimens showed sensitivities of 1.00 (95% CI, 1.00 to 1.00) and 0.94 (95% CI, 0.87 to 1.00]), respectively. The gargle specimens had significantly higher mean CT values of 29.89 (standard deviation [SD], 4.63; P < 0.001) and 29.25 (SD, 3.99; P < 0.001) when collected concomitantly and the next morning, respectively, compared to NPS (22.07 [SD, 4.63]). CT values obtained with spit (23.51 [SD, 4.57]; P = 0.11) and sputum (25.82 [SD, 9.21]; P = 0.28) specimens were close to those of NPS. All alternative specimen collection methods were as sensitive as NPS, but spit collection appeared more promising, with a low CT value and ease of collection. Our findings warrant further investigation. IMPORTANCE Control of the COVID-19 pandemic relies heavily on a test-trace-isolate strategy. The most commonly used specimen for diagnosis of SARS-CoV-2 infection is a nasopharyngeal swab. However, this method is quite uncomfortable for the patient, requires specific equipment (nose swabs and containers), and requires close proximity to health care workers, putting them at risk of infection. Developing alternative sampling strategies could decrease the burden for health care workers, help overcome potential shortages of equipment, and improve acceptability of testing by reducing patient discomfort.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Sputum/virology , Adult , Diagnostic Tests, Routine , Female , Humans , Male , Middle Aged , Nasopharynx , Respiratory System/virology , Saliva
13.
Epidemiol Infect ; 149: e150, 2021 06 23.
Article in English | MEDLINE | ID: covidwho-1338505

ABSTRACT

We assessed severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostic sensitivity and cycle threshold (Ct) values relative to symptom onset in symptomatic coronavirus disease-2019 (COVID-19) patients from Bavaria, Germany, of whom a subset was repeatedly tested. Locally weighted scatterplot smoothing method was used to assess the relationship between symptom onset and Ct-values. Kaplan-Meier plots were used to visualise the empirical probability of detecting viral ribonucleic acid (RNA) over time and estimate the time until clearance of viral RNA among the repeatedly tested patients. Among 721 reported COVID-19 cases, the viral RNA was detected in specimens taken between three days before and up to 48 days after symptom onset. The mean Ct-value was 28.6 (95% confidence interval (CI) 28.2-29.0) with the lowest mean Ct-value (26.2) observed two days after symptom onset. Up to 7 days after symptom onset, the diagnostic sensitivity of the RT-PCR among repeatedly sampled patients (n = 208) remained above 90% and decreased to 50% at day 12 (95% CI 10.5-21.5). Our data provide valuable estimates to optimise the timing of sampling of individuals for SARS-CoV-2 detection. A considerable proportion of specimens sampled before symptom onset had Ct-values comparable with Ct-values after symptom onset, suggesting the probability of presymptomatic transmission.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Virus Shedding , Adolescent , Adult , Aged , Asymptomatic Infections , COVID-19/diagnosis , Child , Child, Preschool , Female , Germany , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , Sputum/virology , Time Factors , Young Adult
14.
Sci Prog ; 104(2): 368504211026152, 2021.
Article in English | MEDLINE | ID: covidwho-1277845

ABSTRACT

The most common method for SARS-CoV-2 testing is throat or nasal swabbing by real-time reverse transcription polymerase chain reaction (RT-PCR) assay. In South Korea, drive-through swab test is used for screening system and community treatment centers (CTCs), which admit and treat confirmed COVID-19 patients with mild symptoms, are being used. This retrospective study was conducted on patients admitted to a CTC on March 6, 2020. A total of 313 patients were admitted. The nasal and throat swabs were collected from the upper respiratory tract, and a sputum test was performed to obtain lower respiratory samples. The positive rate of the first set of test, sputum test was higher than that of the swab test (p = 0.011). In the second set of test, 1 week after the first ones, the rate of positive swab tests was relatively high (p = 0.026). In the first set of test, 66 of 152 (43.4%) patients showed 24-h consecutive negative swab test results, when the sputum test results were considered together, that number fell to 29 patients (19.1%) (p < 0.001). Also, in the second set of test, 63 of 164 (38.4%) patients met the discharge criteria only when the swab test was considered; that number fell to 30 (18.3%) when the sputum test results were also considered (p < 0.001). Using the swab test alone is insufficient for screening test and discharge decision. Patients who may have positive result in the sputum test can be missed.


Subject(s)
COVID-19 Nucleic Acid Testing/standards , COVID-19/diagnosis , Patient Discharge/statistics & numerical data , SARS-CoV-2/genetics , Specimen Handling/methods , Adult , Asymptomatic Diseases , COVID-19/epidemiology , COVID-19/virology , Community Health Centers/organization & administration , Female , Humans , Male , Mass Screening/methods , Nasopharynx/virology , Pharynx/virology , Quarantine/methods , Republic of Korea/epidemiology , Retrospective Studies , Severity of Illness Index , Sputum/virology
15.
Mol Cell Proteomics ; 20: 100113, 2021.
Article in English | MEDLINE | ID: covidwho-1275575

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) can result in pneumonia and acute respiratory failure. Accumulation of mucus in the airways is a hallmark of the disease and can result in hypoxemia. Here, we show that quantitative proteome analysis of the sputum from severe patients with COVID-19 reveal high levels of neutrophil extracellular trap (NET) components, which was confirmed by microscopy. Extracellular DNA from excessive NET formation can increase sputum viscosity and lead to acute respiratory distress syndrome. Recombinant human DNase (Pulmozyme; Roche) has been shown to be beneficial in reducing sputum viscosity and improve lung function. We treated five patients pwith COVID-19 resenting acute symptoms with clinically approved aerosolized Pulmozyme. No adverse reactions to the drug were seen, and improved oxygen saturation and recovery in all severely ill patients with COVID-19 was observed after therapy. Immunofluorescence and proteome analysis of sputum and blood plasma samples after treatment revealed a marked reduction of NETs and a set of statistically significant proteome changes that indicate reduction of hemorrhage, plasma leakage and inflammation in the airways, and reduced systemic inflammatory state in the blood plasma of patients. Taken together, the results indicate that NETs contribute to acute respiratory failure in COVID-19 and that degrading NETs may reduce dependency on external high-flow oxygen therapy in patients. Targeting NETs using recombinant human DNase may have significant therapeutic implications in COVID-19 disease and warrants further studies.


Subject(s)
COVID-19 Drug Treatment , Deoxyribonuclease I/pharmacology , Extracellular Traps/metabolism , Proteome/analysis , Aged , Blood Proteins/analysis , COVID-19/metabolism , COVID-19/therapy , Female , Fluorescent Antibody Technique , Humans , Male , Middle Aged , Recombinant Proteins/pharmacology , Severity of Illness Index , Sputum/drug effects , Sputum/metabolism , Sputum/virology , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology
16.
BMC Infect Dis ; 21(1): 558, 2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-1266475

ABSTRACT

BACKGROUND: The quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) effectively detects the SARS-COV-2 virus. SARS-CoV-2 Nevertheless, some critical gaps remain in the identification and monitoring of asymptomatic people. METHODS: This retrospective study included 733 asymptomatic and symptomatic COVID-19 subjects, who were submitted to the RT-qPCR test. The objective was to assess the efficacy of an expanded triage of subjects undergoing the RT-qPCR test for SARS-COV-2 to identify the largest possible number of COVID-19 cases in a hospital setting in Ecuador. SARS-CoV-2 Firstly, the sensitivity and specificity as well as the predictive values of an expanded triage method were calculated. In addition, the Kappa coefficient was also determined to assess the concordance between laboratory test results and the expanded triage. RESULTS: Of a total of 733 sputum samples; 229 were RT-qPCR-positive (31.2%) and mortality rate reached 1.2%. Overall sensitivity and specificity were 86.0% (95% confidence interval: 81.0-90.0%) and 37.0% (95% confidence interval: 32.0-41.0%) respectively, with a diagnostic accuracy of 52.0% and a Kappa coefficient of 0.73. An association between the positivity of the test and its performance before 10 days was found. CONCLUSIONS: The clinical sensitivity for COVID-19 detection was within acceptable standards, but the specificity still fell below the values of reference. The lack of symptoms did not always mean to have a negative SARS-COV-2 RT-qPCR test. The expanded triage identified a still unnoticed percentage of asymptomatic subjects showing positive results for the SARS-COV-2 RT-qPCR test. The study also revealed a significant relationship between the number of RT-qPCR-positive cases and the performance of the molecular diagnosis within the first 10 days of COVID-19 in the symptomatic group.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sputum/virology , Ecuador , Humans , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Triage
17.
J Surg Oncol ; 124(4): 465-475, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1258085

ABSTRACT

Testing is an essential part of containment of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This review summarizes studies for SARS-CoV-2 infection and testing. Nasopharyngeal samples are best at sensitivity detection, especially in early stages of disease and in asymptomatic individuals. Current swab processing involves a 100- to 1000-fold dilution of the patient sample. Future optimization of testing should focus on using smaller volumes of viral transport media and swab designs to increase comfort and increased viral adhesion.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Sputum/virology , Humans , Sensitivity and Specificity , Specimen Handling , Time Factors , Viral Load
18.
BMC Infect Dis ; 21(1): 494, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1244910

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic. The understanding of the transmission and the duration of viral shedding in SARS-CoV-2 infection is still limited. OBJECTIVES: To assess the timeframe and potential risk of SARS-CoV-2 transmission from hospitalized COVID-19 patients in relation to antibody response. METHOD: We performed a cross-sectional study of 36 COVID-19 patients hospitalized at Karolinska University Hospital. Patients with more than 8 days of symptom duration were sampled from airways, for PCR analysis of SARS-CoV-2 RNA and in vitro culture of replicating virus. Serum SARS-CoV-2-specific immunoglobulin G (IgG) and neutralizing antibodies titers were assessed by immunofluorescence assay (IFA) and microneutralization assay. RESULTS: SARS-CoV-2 RNA was detected in airway samples in 23 patients (symptom duration median 15 days, range 9-53 days), whereas 13 patients were SARS-CoV-2 RNA negative (symptom duration median 21 days, range 10-37 days). Replicating virus was detected in samples from 4 patients at 9-16 days. All but two patients had detectable levels of SARS-CoV-2-specific IgG in serum, and SARS-CoV-2 neutralizing antibodies were detected in 33 out of 36 patients. Total SARS-CoV-2-specific IgG titers and neutralizing antibody titers were positively correlated. High levels of both total IgG and neutralizing antibody titers were observed in patients sampled later after symptom onset and in patients where replicating virus could not be detected. CONCLUSIONS: Our data suggest that the presence of SARS-Cov-2 specific antibodies in serum may indicate a lower risk of shedding infectious SARS-CoV-2 by hospitalized COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , COVID-19/virology , SARS-CoV-2/immunology , Virus Shedding , Adult , Aged , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/immunology , COVID-19 Serological Testing/methods , Cross-Sectional Studies , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sputum/virology
19.
Uirusu ; 70(1): 37-44, 2020.
Article in Japanese | MEDLINE | ID: covidwho-1221886

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by SARS-CoV-2. As of March 30, 2020, there have been 693,224 reported patients with COVID-19 worldwide, with 1,446 in Japan. Currently, although aspects of the route of transmission are unclear, infection by contact and by inhaling droplets is considered to be the dominant transmission route. Inflammatory symptoms in the upper respiratory tract persist for several days to 1 week after onset, and in some patients symptoms of pneumonia worsen and become severe. The presence of underlying diseases and advanced age are risk factors for increased severity. Diagnosis is based on detection of SARS-CoV-2 by polymerase chain reaction (PCR) testing of nasopharyngeal swabs or sputum. Symptomatic management is the main treatment for this disease. Although the efficacy of several agents is currently being tested, at present there is no effective therapeutic agent. To prevent infection, in addition to standard preventive measures, measures that counteract infection by contact and droplet inhalation are important. In addition, if procedures that cause aerosolization of virus are used, then measures that prevent airborne infection should be implemented.


Subject(s)
COVID-19/diagnosis , COVID-19/prevention & control , SARS-CoV-2/isolation & purification , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , COVID-19/therapy , COVID-19/virology , Disease Progression , Extracorporeal Membrane Oxygenation , Female , Humans , Male , Polymerase Chain Reaction/methods , Risk Factors , Sputum/virology , Time Factors
20.
Clin Infect Dis ; 71(15): 786-792, 2020 07 28.
Article in English | MEDLINE | ID: covidwho-1217824

ABSTRACT

BACKGROUND: Rapid identification of COVID-19 cases, which is crucial to outbreak containment efforts, is challenging due to the lack of pathognomonic symptoms and in settings with limited capacity for specialized nucleic acid-based reverse transcription polymerase chain reaction (PCR) testing. METHODS: This retrospective case-control study involves subjects (7-98 years) presenting at the designated national outbreak screening center and tertiary care hospital in Singapore for SARS-CoV-2 testing from 26 January to 16 February 2020. COVID-19 status was confirmed by PCR testing of sputum, nasopharyngeal swabs, or throat swabs. Demographic, clinical, laboratory, and exposure-risk variables ascertainable at presentation were analyzed to develop an algorithm for estimating the risk of COVID-19. Model development used Akaike's information criterion in a stepwise fashion to build logistic regression models, which were then translated into prediction scores. Performance was measured using receiver operating characteristic curves, adjusting for overconfidence using leave-one-out cross-validation. RESULTS: The study population included 788 subjects, of whom 54 (6.9%) were SARS-CoV-2 positive and 734 (93.1%) were SARS-CoV-2 negative. The median age was 34 years, and 407 (51.7%) were female. Using leave-one-out cross-validation, all the models incorporating clinical tests (models 1, 2, and 3) performed well with areas under the receiver operating characteristic curve (AUCs) of 0.91, 0.88, and 0.88, respectively. In comparison, model 4 had an AUC of 0.65. CONCLUSIONS: Rapidly ascertainable clinical and laboratory data could identify individuals at high risk of COVID-19 and enable prioritization of PCR testing and containment efforts. Basic laboratory test results were crucial to prediction models.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Case-Control Studies , Child , Clinical Laboratory Techniques , Coronavirus Infections/virology , Diagnostic Tests, Routine/methods , Female , Humans , Male , Mass Screening/methods , Middle Aged , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction/methods , Retrospective Studies , SARS-CoV-2 , Singapore/epidemiology , Sputum/virology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL